Quick Start
Follow these steps to create and run your first evaluation.
1. Install AgentV
Section titled “1. Install AgentV”npm install -g agentv2. Initialize your workspace
Section titled “2. Initialize your workspace”agentv init3. Configure environment variables
Section titled “3. Configure environment variables”The init command creates a .env.example file in your project root.
- Copy
.env.exampleto.env - Fill in your API keys, endpoints, and other configuration values
- Update the environment variable names in
.agentv/targets.yamlto match those defined in your.envfile
4. Create an eval
Section titled “4. Create an eval”Create ./evals/example.yaml:
description: Math problem solving evaluationexecution: target: default
evalcases: - id: addition expected_outcome: Correctly calculates 15 + 27 = 42
input_messages: - role: user content: What is 15 + 27?
expected_messages: - role: assistant content: "42"
execution: evaluators: - name: math_check type: code_judge script: ./validators/check_math.py5. Run the eval
Section titled “5. Run the eval”agentv eval ./evals/example.yamlResults appear in .agentv/results/eval_<timestamp>.jsonl with scores, reasoning, and execution traces.
Next Steps
Section titled “Next Steps”- Learn about eval file formats
- Configure targets for different providers
- Create custom evaluators